Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.046
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719909

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
2.
Front Immunol ; 15: 1380065, 2024.
Article En | MEDLINE | ID: mdl-38726005

Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses. Method: Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1, while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells, we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally, we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy's effectiveness in vivo. Result: Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1ß. Moreover, CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors, infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Conclusion: Taken together, these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.


B7-H1 Antigen , Immunotherapy, Adoptive , Myeloid Cells , Receptors, Chimeric Antigen , Tumor Microenvironment , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Mice , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/therapy
3.
Front Immunol ; 15: 1395332, 2024.
Article En | MEDLINE | ID: mdl-38726017

PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.


B7-H1 Antigen , Exosomes , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Exosomes/metabolism , Exosomes/immunology , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods , Signal Transduction , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor
4.
Cells ; 13(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38727318

CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.


B7-H1 Antigen , Neoplastic Cells, Circulating , Prostatic Neoplasms , Receptors, CXCR4 , Humans , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Middle Aged , Proto-Oncogene Proteins c-jun/metabolism , Gene Expression Regulation, Neoplastic
5.
BMC Immunol ; 25(1): 29, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730320

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Cross Reactions , Immunotherapy , Programmed Cell Death 1 Receptor , Animals , Humans , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Cross Reactions/immunology , Immunotherapy/methods , Hydrogen-Ion Concentration , Neoplasms/immunology , Neoplasms/therapy , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epitopes/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Mice, Inbred C57BL , Female
6.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702145

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , Adult
7.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713626

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
8.
Pathol Oncol Res ; 30: 1611593, 2024.
Article En | MEDLINE | ID: mdl-38706776

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Squamous Cell , Gene Amplification , Lung Neoplasms , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , In Situ Hybridization, Fluorescence/methods , Prognosis , Aged, 80 and over
9.
Front Immunol ; 15: 1367040, 2024.
Article En | MEDLINE | ID: mdl-38745661

Background: In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods: We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results: In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 µM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion: PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.


B7-H1 Antigen , Immunotherapy , Peptides , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Peptides/immunology , Cell Line, Tumor , Immunotherapy/methods , Humans , T-Lymphocytes, Regulatory/immunology , Female , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/immunology , Cytokines/metabolism , Lymphocyte Activation/immunology , Immunomodulation/drug effects , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology
10.
Tunis Med ; 102(4): 223-228, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38746962

AIM: Our study aimed to perform on Moroccan patients' non-small cell lung carcinoma (NSCLC) concerning the relationship between PD-L1 tumor expression, clinicopathological features and tumor infiltrating immune cells (ICs). METHODS: This is a retrospective study (2019 to 2021) conducted on samples from Moroccan patients with NSCLC at the Pathological Anatomy Laboratory of Ibn Rochd University Hospital in Casablanca. Eligible participants for our study had to meet the following predefined criteria: age ≥18 years, histologically confirmed NSCLC, no prior therapeutic interventions, availability of clinical and pathological data, and a usable tumor sample for determining PD-L1 status. Exclusion criteria applied to patients with other types of lung cancer and unusable tumor samples. The evaluation of tumor and immune expression of PD-L1 was performed using immunohistochemistry (IHC), with the 22C3 clone on the Dako Autostainer Link 48 platform. Tumor PD-L1 expression was categorized into 3 levels: TPS <1% (negative expression), TPS 1-49% (low expression), and TPS ≥50% (high expression). ICs infiltrating the tumor expressing PD-L1 were considered positive when more than 1% of positive ICs were present. RESULTS: Among the 316 analyzed samples, 56.6% showed a negative expression of PD-L1, 16.8% displayed a low expression of PD-L1, and 26.6% exhibited a strong expression. Regarding the histological type, among patients with TPS ≥ 50%, 25.8% had adenocarcinoma. Among patients with TPS ≥ 50%, 24.81% were smokers. PD-L1 was also strongly expressed in the lung (28.2%) and bronchi (26.5%). PD-L1 expression (TPS ≥ 50%) was observed in 35.29% of early-stage patients. Concerning tumor cells (TCs), 27.5% of tumors infiltrated by ICs had TPS ≥ 50%. Furthermore, coexpression of PD-L1 on both TCs and ICs infiltrating the tumor was found in 27.8% of tumors. Statistical analysis demonstrated a significant association between tumor PD-L1 expression and smoking status (P=0.019). However, no significant difference was observed between PD-L1 expression and the presence of ICs infiltrating the tumor (P=0.652), as well as the IHC expression of PD-L1 on ICs (P=0.259). CONCLUSION: Our results demonstrate a significant association between PD-L1 expression and smoking status. However, no significant association was observed between PD-L1 expression and the presence of infiltrating ICs, nor with the IHC expression of PD-L1 on ICs. Our data underscore the importance of participating in the study of specific factors influencing PD-L1 expression in patients with NSCLC.


B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/analysis , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Male , Female , Middle Aged , Retrospective Studies , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Lymphocytes, Tumor-Infiltrating/metabolism , Morocco/epidemiology , Adult , Immunohistochemistry , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over
11.
Cancer Immunol Immunother ; 73(7): 130, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748254

Immune surveillance and chemotherapy sensitivity play critical functions in the tumorigenesis of breast cancer (BC). Emerging findings have indicated that circular RNA (circRNA) and N6-methyladenosine (m6A) both participate in the BC tumorigenesis. Here, present study aimed to investigate the roles of m6A-modified circATAD2 on BC and explore better understanding for BC precision therapeutic. Results reported that m6A-modifid circRNA (m6A-circRNA) microarray revealed the m6A-circRNA landscape in BC. M6A-modifid circATAD2 upregulated in BC samples and was closely correlated to poor prognosis. Functionally, circATAD2 promoted the immune evasion of BC cells and reduced the CD8+ T cells' killing effect. Mechanistically, MeRIP-seq unveiled the m6A modification in the 3'-UTR of PD-L1 mRNA, which was bound by circATAD2 and recognized by m6A reader IGF2BP3 to enhance PD-L1 mRNA stability and expression. In summary, these findings revealed the circATAD2/m6A/IGF2BP3/PD-L1 axis in BC immune surveillance, suggesting the potential that circATAD2 as a potential target for PD-L1-mediated BC.


B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Immunologic Surveillance , RNA, Circular , RNA-Binding Proteins , Humans , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , RNA, Circular/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Mice , Prognosis , Cell Line, Tumor
12.
PLoS One ; 19(5): e0303433, 2024.
Article En | MEDLINE | ID: mdl-38743676

Triple-negative breast cancer (TNBC) demands urgent attention for the development of effective treatment strategies due to its aggressiveness and limited therapeutic options [1]. This research is primarily focused on identifying new biomarkers vital for immunotherapy, with the aim of developing tailored treatments specifically for TNBC, such as those targeting the PD-1/PD-L1 pathway. To achieve this, the study places a strong emphasis on investigating Ig genes, a characteristic of immune checkpoint inhibitors, particularly genes expressing Ig-like domains with altered expression levels induced by "cancer deformation," a condition associated with cancer malignancy. Human cells can express approximately 800 Ig family genes, yet only a few Ig genes, including PD-1 and PD-L1, have been developed into immunotherapy drugs thus far. Therefore, we investigated the Ig genes that were either upregulated or downregulated by the artificial metastatic environment in TNBC cell line. As a result, we confirmed the upregulation of approximately 13 Ig genes and validated them using qPCR. In summary, our study proposes an approach for identifying new biomarkers applicable to future immunotherapies aimed at addressing challenging cases of TNBC where conventional treatments fall short.


Biomarkers, Tumor , Immunotherapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism
13.
J Oral Pathol Med ; 53(5): 310-320, 2024 May.
Article En | MEDLINE | ID: mdl-38693616

BACKGROUND: Various antigen-presenting cells and tumor cells-expressing PD-L1 inhibits antitumor immune responses in the tumor microenvironment. Recently, numerous studies have shown that tumor cell intrinsic PD-L1 also plays important roles in tumor growth and progression. On the other hand, oral squamous cell carcinoma (OSCC) cells overexpress epidermal growth factor receptor (EGFR) and EGFR signal pathway exacerbates tumor progression. Therefore, this study assessed whether tumor-intrinsic PD-L1 facilitates malignant potential of OSCC cells through regulation of EGFR signaling. METHODS: Two OSCC cell lines, SAS and HSC-3, were transfected with PD-L1 and EGFR-specific small interfering RNA (siRNA). Influences of PD-L1 knockdown on malignant potentials of OSCC cells were examined by Cell Counting kit-8 assay, transwell assay, sphere formation assay, flow cytometry, and Western blot. Effects of PD-L1 and EGFR knockdown on each expression were examined by quantitative real-time PCR (qRT-PCR), Western blot, and flow cytometry. RESULTS: Transfection of an PD-L1-siRNA into OSCC cells decreased the abilities of proliferation, stemness, and mobility of these cells significantly. PD-L1 knockdown also decreased EGFR expression through the promotion of proteasome- and lysosome-mediated degradation and following activation of the EGFR/protekin kinase B (AKT) signal pathway. Meanwhile, EGFR knockdown did not influence PD-L1 expression in SAS and HSC-3 cells, but treatment with a recombinant human EGF induced its expression. Treatment with erlotinib and cetuximab suppressed rhEGF-induced PD-L1 expression and localization in the cellular membrane of both OSCC cells. CONCLUSION: OSCC cells-expressing PD-L1 induced by EGF stimulation may promote malignancy intrinsically via the activation of the EGFR/AKT signaling cascade.


B7-H1 Antigen , Carcinoma, Squamous Cell , ErbB Receptors , Mouth Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , ErbB Receptors/metabolism , B7-H1 Antigen/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation
14.
Sci Rep ; 14(1): 10873, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740918

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.


Adenocarcinoma of Lung , Anoikis , B7-H1 Antigen , Immunotherapy , Lung Neoplasms , Programmed Cell Death 1 Receptor , RNA-Seq , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Anoikis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Prognosis , Immunotherapy/methods , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Single-Cell Analysis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor/genetics
15.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715061

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


B7-H1 Antigen , CD8-Positive T-Lymphocytes , Malaria, Cerebral , Mice, Inbred C57BL , Neurons , STAT1 Transcription Factor , Up-Regulation , Animals , Mice , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Interferon Regulatory Factor-1/metabolism , Interferon-gamma/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/pathology , Mice, Knockout , Neurons/metabolism , Plasmodium berghei , Signal Transduction/physiology , STAT1 Transcription Factor/metabolism , Up-Regulation/drug effects
16.
Cancer Med ; 13(9): e7235, 2024 May.
Article En | MEDLINE | ID: mdl-38716626

BACKGROUND: First-line nivolumab plus chemotherapy and nivolumab plus ipilimumab both demonstrated significant overall survival (OS) benefit versus chemotherapy in previously untreated patients with advanced esophageal squamous cell carcinoma (ESCC) in the CheckMate 648 trial, leading to approvals of both nivolumab-containing regimens in many countries. We report longer-term follow-up data. METHODS: This open-label, phase III trial (NCT03143153) enrolled adults with previously untreated, unresectable, advanced, recurrent, or metastatic ESCC. Patients were randomized 1:1:1 to nivolumab plus chemotherapy, nivolumab plus ipilimumab, or chemotherapy. Primary endpoints were OS and progression-free survival (PFS) by blinded independent central review. Hierarchical testing was performed first in patients with tumor cell programmed death ligand 1 (PD-L1) expression of ≥1% and then in the overall population. RESULTS: A total of 970 patients were randomly assigned. After 29 months of minimum follow-up, nivolumab plus chemotherapy continued to demonstrate improvement in OS versus chemotherapy (hazard ratio [HR] = 0.59 [95% CI: 0.46-0.76]) in patients with tumor cell PD-L1 expression of ≥1% and in the overall population (HR = 0.78 [95% CI: 0.65-0.93]) and with nivolumab plus ipilimumab versus chemotherapy (HR = 0.62 [95% CI: 0.48-0.80]) in patients with tumor cell PD-L1 expression of ≥1% and in the overall population (HR = 0.77 [95% CI: 0.65-0.92]). In patients with tumor cell PD-L1 expression of ≥1%, nivolumab plus chemotherapy demonstrated PFS benefit versus chemotherapy (HR = 0.67 [95% CI: 0.51-0.89]); PFS benefit was not observed with nivolumab plus ipilimumab versus chemotherapy (HR = 1.04 [95% CI: 0.79-1.36]). Among all treated patients (n = 936), Grade 3-4 treatment-related adverse events were reported in 151 (49%, nivolumab plus chemotherapy), 105 (32%, nivolumab plus ipilimumab), and 110 (36%, chemotherapy) patients. CONCLUSIONS: Nivolumab plus chemotherapy and nivolumab plus ipilimumab continued to demonstrate clinically meaningful OS benefit versus chemotherapy with no new safety signals identified with longer follow-up, further supporting use as first-line standard treatment options for patients with advanced ESCC.


Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ipilimumab , Nivolumab , Humans , Ipilimumab/administration & dosage , Ipilimumab/therapeutic use , Ipilimumab/adverse effects , Nivolumab/administration & dosage , Nivolumab/therapeutic use , Male , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Middle Aged , Aged , Follow-Up Studies , Adult , Progression-Free Survival , B7-H1 Antigen/metabolism , Aged, 80 and over
17.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Article Zh | MEDLINE | ID: mdl-38706074

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


B7-H1 Antigen , Macrophages , Mycobacterium tuberculosis , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Signal Transduction , Tuberculosis , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Adaptive Immunity
18.
Front Immunol ; 15: 1379613, 2024.
Article En | MEDLINE | ID: mdl-38698850

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.


Carcinoma, Non-Small-Cell Lung , Drug Discovery , Lung Neoplasms , Oncolytic Virotherapy , Proteomics , Humans , Proteomics/methods , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Oncolytic Virotherapy/methods , Organoids , Oncolytic Viruses/immunology , Proteome , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism
19.
Transpl Int ; 37: 12468, 2024.
Article En | MEDLINE | ID: mdl-38699175

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Kidney Transplantation , Kidney , Organoids , Humans , Organoids/immunology , Animals , Kidney/immunology , Mice , Coculture Techniques , Leukocytes, Mononuclear/immunology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/immunology , Immune System , B7-H1 Antigen/metabolism , Macrophages/immunology
20.
J Transl Med ; 22(1): 421, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702780

INTRODUCTION: Immune checkpoint inhibitors (ICIs) induce acute interstitial nephritis (AIN) in 2-5% of patients, with a clearly higher incidence when they are combined with platinum derivatives. Unfortunately, suitable disease models and non-invasive biomarkers are lacking. To fill this gap in our understanding, we investigated the renal effects of cisplatin and anti-PD-L1 antibodies in mice, assessing PD-1 renal expression and cytokine levels in mice with AIN, and then we compared these findings with those in AIN-diagnosed cancer patients. METHODS: Twenty C57BL6J mice received 200 µg of anti-PD-L1 antibody and 5 mg/kg cisplatin intraperitoneally and were compared with those receiving cisplatin (n = 6), anti-PD-L1 (n = 7), or saline (n = 6). After 7 days, the mice were euthanized. Serum and urinary concentrations of TNFα, CXCL10, IL-6, and MCP-1 were measured by Luminex. The kidney sections were stained to determine PD-1 tissue expression. Thirty-nine cancer patients with AKI were enrolled (AIN n = 33, acute tubular necrosis (ATN) n = 6), urine MCP-1 (uMCP-1) was measured, and kidney sections were stained to assess PD-1 expression. RESULTS: Cisplatin and anti PD-L1 treatment led to 40% AIN development (p = 0.03) in mice, accompanied by elevated serum creatinine and uMCP1. AIN-diagnosed cancer patients also had higher uMCP1 levels than ATN-diagnosed patients, confirming our previous findings. Mice with AIN exhibited interstitial PD-1 staining and stronger glomerular PD-1 expression, especially with combination treatment. Conversely, human AIN patients only showed interstitial PD-1 positivity. CONCLUSIONS: Only mice receiving cisplatin and anti-PDL1 concomitantly developed AIN, accompanied with a more severe kidney injury. AIN induced by this drug combination was linked to elevated uMCP1, consistently with human AIN, suggesting that uMCP1 can be potentially used as an AIN biomarker.


Chemokine CCL2 , Cisplatin , Immune Checkpoint Inhibitors , Mice, Inbred C57BL , Nephritis, Interstitial , Programmed Cell Death 1 Receptor , Animals , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Nephritis, Interstitial/urine , Nephritis, Interstitial/pathology , Nephritis, Interstitial/chemically induced , Chemokine CCL2/urine , Chemokine CCL2/metabolism , Cisplatin/adverse effects , Humans , Male , Female , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , B7-H1 Antigen/metabolism , Mice , Middle Aged , Aged , Acute Disease
...